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SUMMARY

Constitutive laws for rock joints should be able to reproduce the fundamental mechanical behaviour of real
joints, such as dilation under shear and strain softening due to surface asperity degradation. In this work, we
extend the model of Plesha1 to include hydraulic behaviour. During shearing, the joint can experience
dilation, leading to an initial increase in its permeability. Experiments have shown that the rate of increase of
the permeability slows down as shearing proceeds, and, at later stages, the permeability could decrease
again. The above behaviour is attributed to gouge production. The stressÐstrain relationship of the joint is
formulated by appeal to classical theories of interface plasticity. It is shown that the parameters of the model
can be estimated from the BartonÐBandis empirical coeƒcients; the Joint Roughness Coeƒcient (JRC) and
the Joint Compresive strength (JSC). We further assume that gouge production is also related to the plastic
work of the shear stresses, which enables the derivation of a relationship between the permeability of the
joint and its mechanical aperture. The model is implemented in a Þnite element code (FRACON) developed
by the authors for the simulation of the coupled thermalÐhydraulicÐmechanical behaviour of jointed rock
masses. Typical laboratory experiments are simulated with the FRACON code in order to illustrate the
trends predicted in the proposed model.( 1998 by John Wiley & Sons. Ltd.
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INTRODUCTION

Discontinuities in rock masses, which shall be referred to as ÔjointsÕ in this paper, constitute planes
of weakness in the rock mass from the point of view of its mechanical behaviour. Under external
loads, sliding along the joints is likely to occur. Due to the presence of asperities at the joint
surfaces, dilation usually accompanies the shearing process, leading to an increase in the joint
aperture. As a consequence, the joint becomes more permeable. The asperities of the joint walls
have Þnite strength. Mechanical degradation of these asperities occurs during shear, and the
dilation of the joint will diminish at the later stages of the shearing process. During this process,
gouge material is being produced by the damage of the asperities and the accumulation of the
gouge material can result in the reduction of ßow in the joint. The very limited number of
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experiments2Ð4 which investigate the e⁄ects of shear on joint permeability show that as shearing
proceeds, the permeability decreases as a result of gouge production.

Patton5performed experiments on artiÞcial joints with regular Ôsaw-toothÕ shapes moulded out
of plaster of Paris. He proceeded to propose a bilinear model of a shear strength criterion; at low
normal stress, the joint shows dilation during shear due to overriding of the asperities; at high
normal stress, shear through the asperities occurs and limited dilation is observed. Ladanyi and
Archambault,6 Jaeger,7 Barton and Choubey8 and Bandis et al.9 proposed similar strength
criteria, with a smooth transition between the two extreme types of response proposed by
Patton.4Barton and Choubey,7and Bandiset al.8 introduce the empirical coeƒcients JRC (Joint
Roughness Coeƒcient) and JCS (Joint Compressive Strength) in their strength criterion. These
empirical coeƒcients are easily determined either in the laboratory orin situ and they are
a measure of the roughness of the joint surface (JRC) and the strength of the asperities (JCS).
Empirical relations are proposed by these authors in order to include scale-dependency of JRC
and JCS. The above strength criteria delineate the state of stress that separates pre-sliding and
post-sliding of the joints. In order to predict the stressÐstrain behaviour of joints in both stages,
numerous constitutive relationships have been proposed. These relationships could be categor-
ized into two main classes. The incremental relationships10Ð15consist of piecewise linear relation-
ships between the increment of stress and the increment of strain. These relationships are usually
developed from direct shear tests under constant normal stress and their use under di⁄erent load
paths is not straightforward. Graphical methods to use these models to predict shear behaviour
under constrained dilation (or constant normal sti⁄ness) have been proposed with some suc-
cess.16~18Boulon and Nova15and Benjelloun4 proposed an incremental approach with direc-
tional dependency. In this approach, the stressÐstrain matrices are determined from elementary
stress paths derived from laboratory tests (such as shear under constant normal stress conditions).
A weighted interpolation procedure between the elementary stress paths is used to determine the
incremental stressÐstrain matrix for other stress paths. The second category of constitutive
relationships are the elastoplastic relationships, derived from the theory of plasticity. The models
which fall into this category assume that before sliding, the deformations are elastic (recoverable).
Post-sliding behaviour is characterized by plastic (irrecoverable) deformations. The state of stress
that separates elastic from plastic behaviour is deÞned by appeal to a yield criterion. For example,
Roberds and Einstein19used the strength criterion proposed by Patton5as the yield criterion to
formulate their elastoplastic model. Strain-softening (decrease in shear stress in the plastic stage)
often found in experimental behaviour of joints could not be predicted from the model proposed
by Roberds and Einstein.19 Numerous elastoplastic models exist in the literature (see, e.g.
References 1 and 19Ð23, to name only some). The elastoplastic approach has a particular appeal
since di⁄erent load paths and directions could be accommodated. Among the above models, the
one proposed by Plesha1 is particularly attractive due to its simplicity and its ability to capture
certain fundamental aspects of the mechanical behaviour of real joints, such as dilation under
shear and strain softening due to surface asperity degradation.

For predicting the hydraulic behaviour of rock joints, the parallel plate model, developed from
the application of the NavierÐStokes equation for laminar incompressible ßow between two
parallel smooth plates, is widely used to calculate the e⁄ective permeabilityk of a fracture (see, e.g.
Reference 4). The permeability of the joint is thus expressed as a function of its e⁄ective opening to
ßuid ßow, called the hydraulic aperture. Since natural fractures are quite dissimilar to ideal
parallel plates, the hydraulic aperture of the fracture is not equal to its mechanical aperture.
Empirical relationships between the mechanical and hydraulic apertures were proposed by
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Figure 1. Joint model proposed by Patton5

By imposing the constraint that only shear traction can produce permanent deformation due
to sliding, Michalowski and Mroz 28proposed that, in the case of perfectly plane contact surface.

Q" DqD (4)

In PattonÕs model shown in Figure 1, the asperities have regular angles of inclinationa with
respect to the horizontal direction. Along a typical asperity inclined at anglea, the relationship



and thus, the yield criterion for the saw-tooth joint model is

F" Dpsina# qcosaD# tan / (qcosa! p sina) (8)

Similarly, the plastic potential function is deÞned as

Q" Dpsina# qcosaD (9)

Derivation of the elastoplastic sti¤ness matrix of the model by Plesha

In the formulation presented by Plesha,1 sliding along the asperities is considered. When the
magnitude of the applied shear stress is such thatF, as deÞned in equation (8), is less than zero,
only elastic deformations in the shear direction take place. Plastic or irrecoverable deformations
in both shear and normal directions take place whenF" 0. The total increment of relative
displacement at the joint, in this case, is the sum of an elastic and a plastic component; i.e.

dui" du%
i# du1

i (10)

When plastic displacements occur, the asperities of the joint are damaged, resulting in a decrease
of the asperity angle. Plesha1assumes that the asperity angle decreases as an exponential function
of the plastic work produced by shear

a" a0expA! PW1

0
cd¼ 1B (11)

wherea0 is the original asperity angle,c is a degradation coeƒcient and¼ 1 is the plastic work
produced by the shear stress

¼ 1" Pqdu1
1 (12)

where du1" du is the relative joint shear displacement.
From the consideration of asperity degradation, strain softening behaviour will now occur at

the joint during plastic deformation, i.e. both the yield surface and the potential surface, as deÞned
respectively, by equations (8) and (9), will shrink in theqÐp stress space. BothF and Q will now be
functions of not only q and p but also of the plastic work deÞned by equation (12) (i.e.
F" F (q, p, ¼ 1) and Q" Q(q, p, ¼ 1).

The increment of stress dpi is related to the increment of elastic displacement at the joint by

dpi" Dij du%
j (13)

whereDij is the elastic sti⁄ness matrix (with elements having units of Pa/m in SI units).
Following conventional procedures applicable to the mechanics of elastoplastic solids29and

interface plasticity,1,30it can be shown that

dpi" D%1
ij duj (14)

whereD%1
ij is the elastoplastic sti⁄ness matrix, given by

D%1
ij " Dij!

1

t ! H
LQ
Lpk

DikDmj
LF
Lpm

(15)
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and

j "
1

t ! H
LF
Lpi

Dij du



Figure 2. Schematic illustration of the many orders of asperities for real joints

The coeƒcients JRC (dimensionless) and JCS (MPa) and the friction angle/ can be easily
estimated from two tests8,9: the tilt test and the Schmidt hammer test. To determine/ , an
artiÞcial clean joint is prepared by diamond-sawing of a rock specimen containing the real joint,
and sandblasting the surfaces. The jointed rock specimen is then tilted until sliding occurs along
the clear joint. The tilt angle measured will be equal to/ " . The angle/ " reßects pure friction
resistance of clean (unweathered) planar surfaces. The friction angle/ for the real joint also
reßects pure frictional behaviour. Nevertheless, the real joint contains gouge material originating
from the failure of surface asperities. From the results of 135 shear tests on natural joints, Barton
and Choubey8 have proposed the following empirical relationship between/ and / " , i.e.

/ " (/ "! 20)# 20(r/R) (22)

where,R and r are rebound value (m) from the Schmidt hammer test performed, respectively, on
a clean,dry unweathered surface and on awet joint surface. JCS, the joint wall compressive
strength is obtained from a simple empirical relation with the Schmidt rebound value

Log10JCS" 0Æ00088oR# 1Æ01 (23)

where JCS is in MPa,o is the unit weight of the dry rock in kN/m3.
The value of JRC, on the other hand, is determined from the tilt test, by using equation (19)

JRC" (b! / r)/log(JCS/p0) (24)

whereb is the tilt angle when sliding occurs andp0 is the self-weight induced normal stress acting
on the joint, at the instant of sliding.

The parameters JRC and JCS are both scale-dependent. Bandiset al.9 proposed the following
empirical relations:

JRC" JRC0A¸
¸ 0B

~0>02 JRC0
(25)

JCS" JCS0A¸
¸ 0B

~0>03 JRC0
(26)

where JRC0 and JCS0 are laboratory-scale values, for joints with normal sizȩ 0" 100 mm and
JRC and JCS are values for larger samples, of size¸ .

Bandiset al.9also experimentally observed thatu1%!,, the shear displacement corresponding to
the peak shear stressq1%!,, under constant normal stress conditions, can be considered to be
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independent of the normal stress but is scale dependent, i.e.

u1%!,"
¸

500AJRC

¸ B0>33
(27)

Assuming linear elastic response of the joint up to the peak shear stress, we can obtain, from
equations (19) and (27), the elastic shear sti⁄nessk4as follows:

k4"
Dq1%!,D
u1%!,

"
p tan(JRC Log10(JCS/p)# / )

(̧ /500)/(JRC/̧ )0>33
(28)

The remaining parameter required for the model proposed by Plesha1 is the normal sti⁄ness k/ .
This parameter can be determined by performing compression tests on jointed rock specimens.
The most comprehensive experimental investigations on the normal closure behaviour of joints
under applied normal stresses are due to Bandiset al.9In these studies, 64 pairs of specimens, with
a wide range or rock types and surface roughness were tested. Each pair of specimens consists of
one jointed specimen and one unjointed specimen. Normal compression tests were performed on
both specimens. The deformation of the unjointed specimen was subtracted from the deformation
of the jointed specimen in order to obtain the net deformation properties of the joint. Typically,
several cycles of loadingÐunloading were performed. Strong hysteresis is observed for the Þrst few
cycles and this hysteresis progressively disappears with the number of cycles. The third or fourth
cycle is generally considered to be representative ofin situ conditions. The normal stress-closure
curves have the shape of steep hyperbolae. Several authors9,10adopt hyperbolic relations to
describe these experimental curves. For example, Bandiset al.9proposed the following hyperbolic
relationship:

p" k/*
v

1! v/v.
(29)

wherek/* is the normal sti⁄ness at zero normal stress, andv. is the maximum closure of the joint.
The normal sti⁄ness at any level of normal stress is then

k/"
dp
dv

" k/*A1!
p

v. k/*# pB~2
(30)

The parametersk/* and v. that enter into equation (30) are best determined by performing
compression tests on jointed rock samples.

HYDRAULIC BEHAVIOUR OF A JOINT

The parallel plate model, developed by the application of the NavierÐStokes equation for laminar
incompressible ßow between two parallel smooth plates, is usually used to calculate the permeab-
ility k of the fracture (see, e.g. Reference 4), i.e.

k" e2
) /12 (31)

wheree) is the hydraulic aperture of the joint.
Since natural fractures are quite dissimilar to ideal parallel plates, the hydraulic aperture of the

fracture is not equal to its mechanical aperture. Barton24 proposed the following empirical
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relationship to estimate the hydraulic aperture from the mechanical aperture

e)"
e2
.

JRC2>5
(32)

wheree) is in l m, e. (also in l m) is the mechanical aperture of the joint.
Elliot et al.25and Witherspoon et al.26proposed a linear relationship between the hydraulic

and mechanical apertures

e)" e)0# f * e. (33)

wheree)0 is the initial hydraulic aperture, * e. is the variation in mechanical aperture due to the
combined e⁄ects of compression and shear as discussed in the above section, andf is a propor-
tionality factor. Benjelloun4experimentally conÞrmed the validity of equation (33) and found that
f varies between 0Æ5 to 1. This factor comes from the roughness of the joint surfaces. A factor
f" 1 applies to the limiting ideal case of parallel smooth plates; this situation prevails only when
the joint is relatively open, with apertures of the order of mm. For most other cases,f( 1. The



Shear under constant normal stress

Most laboratory experiments on joints are performed under constant normal stress conditions.
These conditions apply mainly to geomechanical problems associated with rock slope stability,
where the focus is on the analysis of the sliding movement of rock blocks near the surface of
a slope. The constant normal stresses across the joints between these blocks is due to the weight of
the blocks themselves.

We show here the simulation of experiments involving shear under constant normal stress
performed by Skinaset al.18 The tests were conducted on 15 cm] 10 cm model joints. These



Figure 4. Finite element model for joint shear under constant normal stress condition

Figure 5. Shear under constant normal-stress—shear stress vs. shear displacement

The results for shear stress versus shear displacement are shown in Figure 5. A close Þt was
obtained between the results derived from the numerical modelling and the experimental results.
Figure 5 shows that the shear strength of the joint increases with the normal stress level, at the
same time the joint becomes more brittle (i.e. strain softening becomes more pronounced). The
displacement corresponding to the peak shear stress does not depend on normal stress level, but
only on the size of the joint sample [cf. equation (31)]. These observations are also consistent with
experimental results obtained by other researchers (e.g. References 4, 8, 9).

The joint dilation due to shear is shown in Figure 6. For a value of the normal stress of 1 MPa,
the FRACON code overpredicts dilation by approximately 15 per cent when compared to the
experimental results. This might be due to an inherent feature of the implementation of the model
by Plesha1 into the FRACON code. This model does not allow the joint surfaces to approach one
another as the asperities are degraded. Plesha33 included this damage deformation in a recent
version of his model. The FRACON code nevertheless correctly predicts decreasing dilation with
increasing normal stress, as found experimentally by numerous researchers (e.g. References 4, 8,
9). No experimental data were given by Skinaset al.18 for dilation at normal stress values of
2 MPa and 5 MPa.

Figures 7Ð9 illustrate the e⁄ects of degradation on the joint behaviour, for a typical case
(normal stress of 1 MPa). From Figure 7, it may be observed that the joint would behave in an
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Figure 6. Shear behaviour under constant normal stress conditions—joint dilation

Figure 7. E⁄ects of degradation on shear stress

Figure 8. E⁄ects of degradation on dilation
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Figure 9. E⁄ects of degradation on the asperity angle

elasticÐ





Figure 11. Joint behaviour under constant normal sti⁄ness conditions

a corresponding increase in the permeability of the joint (Figure 13). However, this permeability
later decreases due to gouge production by joint asperity breakage. Bandiset al.2 could not
simulate this permeability decrease (Figure 13), using BartonÕs24



Figure 12. Schematics of the hydromechanical experiments performed by Bandiset al.2 and Makurat et al.3

Figure 13. Hydromechanical experiments—e⁄ects of shear on joint permeability

into smaller samples for testing separately. In these experiments shear tests were performed under
constant normal stress conditions.

In this study, the scale e⁄ects in the tests conducted by Bandiset al.9are simulated by using the
properties given in their studies:

¸ 0" 6 cm JRC0" 16Æ7 JCS0" 2 MPa normal stress" 24Æ5 kPa
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Figure 14. Hydromechanical experiments—shear dilation calculated via the FRACON code

Figure 15. Scale e⁄ects on joint shear

Scale e⁄ects are simulated with the FRACON code by using the empirical equations (25) and (26).
The Þnite element mesh used in the study is similar to the one shown in Figure 4.

Figure 15 shows that the FRACON code correctly predicts that with increasing size, strain
softening is less pronounced, i.e. the joint behaviour becomes less brittle. With increasing size, the
shear sti⁄ness prior to failure decreases and the displacement required to reach the peak shear
stress increases. The shear strength of the joint is somewhat underestimated by the numerical
modelling, especially for the larger specimens.
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Figure 16. Scale e⁄ects on joint dilation

Figure 16 shows scale e⁄ects on joint dilation. The FRACON code correctly predicts a de-
crease in shear dilation with larger samples. The experimental data shows that dilation starts
before the peak shear stress is attained. As can be seen in Figure 16, the model by Plesha1
incorporated in the FRACON code assumes linear elastic behaviour in the pre-peak phase. Thus,
dilation is predicted to start only after the attainment of the peak shear stress. As previously
discussed, because no damage deformation is incorporated in the model, with the smaller joint
samples, the FRACON code overpredicts the dilation value.

CONCLUSIONS

A joint model was implemented in a Þnite element code (FRACON) to simulate coupled
thermalÐ
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