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Abstract

The paper examines the in!plane loading of a disc shaped rigid disc inclusion which is embedded in bonded
contact with the plane surfaces of a penny!shaped crack[ The mixed boundary value problem governing the
elastostatic problem is reduced to the solution of a system of coupled integral equations\ which are solved
numerically to determine results of engineering interest[ These results include the in!plane sti}ness of the
disc inclusion and the crack opening mode stress intensity factor at the boundary of the penny!shaped crack[
� 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The disc inclusion problem in the classical theory of elasticity is a particular simpli_cation of
the general category of three!dimensional inhomogeneities[ When the physical con_guration of
the inhomogeneity allows its modelling as a disc inclusion\ the analysis of the inclusion problem
can be considerably simpli_ed[ Attention can be focused on the analysis of a variety of inclusion
problems which are essentially mixed boundary value problems related to an elastic halfspace
region[ Elastostatic problems associated with disc inclusions have been successfully applied to
examine a variety of problems of interest to the mechanics of multiphase composite materials and
geomechanics[ The investigations by Collins "0851#\ Keer "0854# and Kassir and Sih "0857# are
the pioneering works in this area[ Since these original developments\ the theory of a disc inclusion
has been applied to a variety of situations involving anchor!type objects used in geomechanical
applications[ These studies have taken into consideration non!classical e}ects such as material
anisotropy\ in~uence of bi!material regions\ ~exibility of the inclusion\ delaminations and cracking
both within and exterior to the inclusion region and the interaction between the inclusion and
externally placed loads[ Accounts of these developments are given by Mura "0870\ 0877#\ and in
the recent articles by Selvadurai et al[ "0889#\ and Selvadurai "0883a\ b#[
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Fig[ 0[ In!plane translation of a rigid disc inclusion embedded in a penny!shaped crack[

In this paper we examine the problem related to a disc!shaped rigid circular inclusion which is
embedded at the centre of a penny!shaped crack[ The problem may be visualized either as a
situation where fracturing has extended beyond the boundary of a rigid disc inclusion or where an
inclusion region is created by the injection of a cementitious material into a geological medium by
hydraulic facturing "Fig[ 0#[ The disc inclusion embedded in a crack is\ therefore\ an approximate
analogue of the anchor region[ In general the rigid anchor region can be subjected to various
modes of deformation[ The axial loading of a rigid disc anchor embedded in complete bonded
contact with the faces of the penny!shaped crack was examined by Selvadurai "0878#[ This result
was extended by Selvadurai "0883b# to examine the case when the axial loading in the presence of
delamination at one face of the inclusion[

In this study we extend the work to include the in!plane loading of the rigid circular disc inclusion
for the particular case when the inclusion is in bonded contact with the faces of the penny!shaped
crack[ The in!plane loading of the inclusion is more consistent with situations where the anchorage
is formed at orientations normal to a direction of minimum principal stress exerted\ for example\
by self weight stresses[ Also\ the problem examined considers the case where the rigid disc anchor
or inclusion is located\ in bonded contact\ at the centre of the penny!shaped crack[ Such positioning
is expected to produce an anchorage of highest compliance\ which is important to the assessment
of the elastostatic e.ciency of the anchorage[ The mixed boundary value problem resulting from
the anchor "inclusion#�crack interaction problem is reduced to the solution of a set of coupled
integral equations which are solved in a numerical fashion[ Numerical results are presented for the
in!plane sti}ness of the inclusion and for the crack opening mode stress intensity factor at the
boundary of the penny!shaped crack[
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1[ Governing equations

The associated asymmetric elastostatic boundary value problem can be formulated by employing
the stress function techniques developed by Muki "0859#[ The stress functions are governed by the
di}erential equations

9191F"r\ u\ z# � 9 "0a#

91C"r\ u\ z# � 9 "0b#
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is Laplace|s operator referred to the cylindrical polar coordinate system[ The displacement and
stress components in the elastic medium can be expressed in terms of the functions F"r\ u\ z# and
C"r\ u\ z#[ Considering a Hankel transform development of the governing equations we can show
that the relevant solutions applicable to the region 9 � z � � take the forms
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where A"j#\ B"j# and C"j
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where G is the linear elastic shear modulus and n



A[P[S[ Selvadurai:International Journal of Solids and Structures 25 "0888# 0690�0603 0694

g
�

9

N"j#J0"jr# dj � 9 ^ 9 � r � a "08#

g
�

9

N"j#J0"jr# dj � 9 ^ b � r � � "19#

g
�

9

jL"j#J9"jr# dj � 9 ^ a � r � � "10#

g
�

9

jM"j#J1"jr# dj � 9 ^ a � r � � "11#

g
�

9

j $L"j#�M"j#�
1N"j#
"0�1n#% J0"jr# � 9 ^ a � r � b "12#

where the functions L"j#\ M"j# and N"j# are related to the functions A"j#\ B"j# and C"j# according
to
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3j1"0�n#B"j# � 1N"j#�L"j#�M"j# "14#

1j1C"j# � L"j#�M"j# "15#

Considering the integral equations "06#�"12# we introduce the following representations
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with 80"9# � 9 and the prime denotes the derivative of the function with respect to t[ Substituting
"16# and "17# into "10# and "11# we _nd that both equations are identically satis_ed[ Substituting
"16# into "06# we obtain
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which is an integral equation of the Abel type\ the solution of which is given by
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The eqn "12# can be written in the form
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Also\ introducing the substitution
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and using the representations for L"j# and N"j# it can be shown that
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integral equations is such that results of practical interest can be obtained only upon numerical
solution of these equations[

3[ Load�displacement behaviour of the disc inclusion

The shear stress distribution at the disc inclusion�elastic medium interfaces can be used to
evaluate the in!plane load�displacement relationship for the rigid disc inclusion[ The shear traction
on the plane z � 9 in the x!direction is given by
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The resultant force T required to induce the in!plane displacement d is given by
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where the prime indicates the derivative with respect to t\ "46# can be reduced to the result
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4[ Stress intensity factor at the crack tip

Since the state of deformation induced in the elastic medium as a result of the displacement of
the inclusion is symmetric about the plane z � 9\ the mode II and mode III stress intensity factors
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where the prime denotes the derivative with respect to the appropriate argument[ The stress
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Fig[ 1[ The in~uence of the inclusion!crack aspect ration "a:b# on the in!plane sti}ness of the disc inclusion
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mixed boundary value problem referred to a halfspace region[ It is shown that the mixed boundary
value problem can be reduced to a system of coupled integral equations which can be solved by
using a quadrature scheme\ to develop results of engineering interest[ In the case when the inclusion
is bonded to the surfaces of the crack\ the stress singularity at the boundary of the inclusion will
exhibit an oscillatory form of a stress singularity[ Studies conducted previously in connection with



A[P[S[ Selvadurai:International Journal of Solids and Structures 25 "0888# 0690�0603 0602

Fig[ 2[ The in~uence of the inclusion!crack aspect ration "a:b# on the mode I stress intensity factor at the crack tip r � b
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the axial loading of an inclusion embedded in a crack have shown that such local e}ects have very
little in~uence on the overall responses such as the load�displacement behaviour of the inclusion[
The stress singularity at the crack tip is regular and the nonzero axial stress can be used to compute
the mode I stress intensity factor[ Furthermore\ the numerical results indicate that the in!plane
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sti}ness of the inclusion is not signi_cantly in~uenced by the extent of cracking in the plane of the
inclusion[ For all practical purposes\ the elastic solution can be conveniently computed by making
use of the exact analytical result for the in!plane translation of a rigid punch which is embedded
in bonded contact between two halfspace regions[
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