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essentially forms the basis for obtaining solutions to a variety of problems involving 
nuclei of strain and presents an alternative technique for determining the solution of 
Boussinesq's [2] classical result for the localized loading of an elastic halfspace by a 
concentrated force acting normal to its boundary (See also Selvadurai [3]). The 
celebrated work of Mindlin 



158 A.P.S.  SELVADURAI 

thin plate of infinite extent and an underlying elastic halfspace was presented 
independently by Hogg l11] and Holl [12]. According to Korenev [13], the analysis of 
this problem was also presented by Shekhter [14] and Leonev [15]. Sneddon et al. [16] 
and Selvadurai [17] give further studies related to the unbonded interaction problem. 
Korenev [13], Hetenyi [l 8], Selvadurai [5] and Gladwell [6] give comprehensive reviews 
of the mechanics of plates resting on elastic foundations. In many of the problems 
dealing with the contact between an infinite elastic plate and an elastic halfspace, the 
contact is assumed to be bilateral and smooth. This implies that the interface between the 
plate and the halfspace is smooth but capable of sustaining tensile tractions. This 
interaction model is, of course, valid for situations where the entire plate is subjected to 
either a precompression or the self weight of the infinite plate is included to maintain the 
interface stresses compressive over the entire central region. When such precompression 
is absent, the contact invariably involves separation and the problem needs to be 
formulated as a unilateral contact problem where the extent of the contact zone now 
becomes an unknown in the problem. This class of problems has been investigated in the 
literature (see, e.g., Gladwell [19], Laermann [20]) and references to further work can be 
found in references [5], [6] and [lg]. The alternative to both bilateral and unilateral 
contact conditions assumes that the infinite plate is completely bonded to the interface. 
In this case the zero shear traction boundary condition is replaced by a zero radial 
displacement boundary condition, in instances where the bonded plate exhibits 
inextensibility constraints in its plane. This is perhaps a more realistic contact condition, 
which is applicable to structural elements that are invariably bonded to the underlying 
elastic substrate to generate a greater interactive stiffness under transverse loads. This 
paper presents the solution to the problem of a halfspace the surface of which is 
reinforced with a bonded fexible thin plate and internally loaded a of plawE09 t o  t r a n s v e r s e  elements the boundary t o  elements the the and b o n d e d  i n v a r i a b l y  interface. 
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2 Axisymmetric problem for a surface constrained halfspace 

We consider the axisymmetric problem of a thin plate of thickness t and infinite extent 
which is bonded to the surface of a halfspace and loaded by an external axisymmetric 
load p(r) and a Mindlin force of magnitude PM, which is located at a distance h from the 
bonded plate (Figure 1). The plate is assumed to be inextensible in its plane; this 
introduces a zero radial displacement constraint at the surface of the halfspace. The 
objective of the preliminary analysis is to develop the relationship between an applied 
axisymmetric surface normal stress and the corresponding axisymmetric surface 
displacement in the axial direction. The solution of this class of problem can be 
approached by appeal to Love's [21] strain function (O(r, z))(See also Selvadurai [22]) 
formulation, where the governing partial differential equation is 

V2V 2~(r,z) = 0 (1) 

where 

V2= 8 2 1 0 3 2 

Or - -T+ - - -+ - -  r 3r 3z 2 (2) 

is Laplace's operator in axisymmetric cylindrical polar coordinates. By adopting a 
Hankel integral transform solution of (1) such that the zeroth-order Hankel transform of 
(O(r,z)) is defined by (Sneddon [23]) 

( ¢ , z ) =  

0 

(3) 

it can be shown that the relationship between the transformed values of the surface 
displacement and the applied normal contact stress for a halfspace with a zero radial 
displacement constraint can be evaluated in the form 

- o  (3-4v) -o 
w, (~:) = 4G(1 - v) :qq (~:) (4) 

where 

_ _ o  
u~ (Go)  = w,  (¢) = ru~ ( r , 0 )Jo ( f r )d r  (5) 

0 

~ ,  (~,0) = qO (¢) = ~ rq(r)Jo (~)dr (6) 
0 
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The solution to this problem can be obtained by simply superposing two Kelvin Forces 
(PM) (associated with the infinite space) both of which act in the negative z-direction but 
placed at z = + h. For this combination of Kelvin forces the boundary conditions (7) are 
exactly satisfied and 

- PM [. (3-4v)  h 2 ] 
u:(r,o) = 8~- -~-v )L( r~  + h 2 ) , / 2  ~- ( r  2 + h 2 ) 3 ,  2 

(8) 

The zeroth-order Hankel transform of the surface displacement (8) due to the action of 
P#t in a radially surface constrained, normal traction free halfspace is given by 

_ , o  -o (3 - 4v) 
u, (¢ ' ,0)  = wa(~) = s°(~) (9) (9) is is to 
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Operating on (12) with the zeroth-order Hankel transform we obtain 

D¢4w°(¢) + qOc (¢) = p0(¢) (13) 

The relationship between the surface displacement of the halfspace due to the combined 
action of q(r) and the Mindlin force can be obtained by combining (4) and (9), i.e., 

(3-4v) [ - -0. . .  s0(¢)l 
TwO (¢) = 4G(---~- v)¢ L qc (q) - 

(14) 

We can eliminate qO(¢) between (13) and (14) to obtain an expression for ~0(¢) .  
Inverting the result we obtain 

(3-4v) f ( p ° (~ ) -2~ (1+  ~h4v))e-a'l~ (15) w(r) = 4G(1- v) g (3 

where 

R o = D(3 - 4v) (16) 
4G(1 - v) 

Expressions for the flexural moments and shear force in the plate can be obtained from 
the results 

L dr2 r dr J (17) 

~[ I dw d2w "] 
(18) 

This formally completes the analysis of the Mindlin problem for a halfspace with a 
bonded flexural surface constraint. The expressions for the displacements and stresses 
within the halfspace region can be obtained by superposing on the Kelvin doublet 
solution the displacement and stress fields derived from the contact stress qc(r) which is 
defined through (14). In the case where p(r) has an arbitrary axisymmetric form the 
resulting integral expressions for w(r), qc(r), M,(r), etc., can be evaluated only through 
numerical techniques. 

161 
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For example, in order to evaluate the displacement w(0) of the stiffening surface plate we 
need to evaluate integrals of the type 

I = ~ d ~  (20) 

Although symbolic manipulations through the use of software such as MAPLE TM and 
MATHEMATICA TM can be 
follows 

e_2/2 
I = - e A Ei(l, ~.) + ~ {C IC 2 Ei(1, C-3 ) + C2 Ei(1, C 3 )} 

C 1 = (_l)>t43/u; 

C 2 = 1 + iq~; 

C 3 = -~-C 2 

where 

(2]) 

(22) 

C 2 and C 3 are complex conjugates and Ei(n,x) is the exponential integral defined by 
ao 

Ei(n,x) = ~e-Xtt-ndt (23) 
1 

these integrals themselves need to be evaluated separately or recourse must be made to 
the tabulated values of the integrals given in the literature (see e.g. Abramowitz and 
Stegun [24]. In these circumstances it may be more convenient to evaluate the integral 
expressions for the displacement, flexural stresses etc., by directly using a quadrature 
scheme. 

4 A Limiting case 

It is instructive to record results for a certain limiting case to establish the influence of the 
adhesive nature of the contact between the elastic plate and the halfspace. Consider the 
specific case when the plate is subjected purely to an external concentrated force P* such 
that ~0 (~) = p ,  / 2z.  The expression for w(r) given by (15) (with PM--- 0) reduces to 

(3 - 4v)P * ~ Jo (~r)d~ 
w(r)= 8nG(1-v) 0 ~ ( I+R'~ ') 

(24) 

We can evaluate w(O) as 
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1F (3-4v)1 ~'3 
[w(O)],,o.,,~,, 



164 A.P.S. SELVADURAI 


