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In Eqns (1)–(4), G is the linear shear modulus and ν is Poisson’s ratio of the porous skeleton (i.e. the
drained elastic parameters); νu is the undrained Poisson’s ratio of the fluid-saturated medium; k is the
hydraulic conductivity; B is Skempton’s pore pressure parameter [32]; and ∇2 is the axisymmetric form
of Laplace’s operator given by

∇2 ¼ ∂2

∂r2
þ 1

r
∂
∂r
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: (5)

Certain thermodynamic constraints need to be satisfied to ensure positive definiteness of the strain
energy potential [33]; it can be shown that these constraints can be expressed in the forms: G>0;
0≤ B ≤ 1; �1< ν< νu ≤



The accuracy of the representations in terms of S(r, z, t) and E(r, z, t) can be verifi



σzz r; 0; tð Þ ¼ 0 a < r < ∞ (16)

σrz r; 0; tð Þ ¼ 0 0 < r < ∞ (17)

where Δ is the axial displacement of the rigid circular foundation. Two types of the drainage boundary









Because the contact stresses are related to the vertical surface displacements through the coefficient
matrix, the following equation is applied to satisfy global equilibrium:

∑
n

i¼1
eσ



shows a maximum discrepancy of 7.6% when ν=0, νu=0.5 but decreases to 0.4% when
ν=0.2, νu=0.5 and ν=0.4, νu=0.5.

Figure 3 compares the contact stress ratio, σzz(0, 0, t*)/σzz(0, 0, 0), with the results given in Chiarella
and Booker [23]. The trend of the present results is consistent with that given by Chiarella and Booker
[23]. The discrepancy is larger around the maximum contact stress at approximately 3.5%. It decreases
as t* increases. The discrepancy is 1.6% at t*=1.

Figure 4 compares the results obtained for Case I (completely pervious surface) and Case II
(completely impervious surface). The consolidation rate increases as ν increases for both cases. It is
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observed that the consolidation rate is slower when the surface is completely impervious. The results
given by Yue and Selvadurai [25] are represented by circles; the trend shown in the present results
matches well with that of Yue and Selvadurai [25].

Figure 5 shows the effect of Poisson’s ratio on the consolidation rate for Case I. When ν is set to 0,
the consolidation rate decreases as νu increases. On the other hand, when νu is fixed at 0.5, the
consolidation rate increases as ν increases (see also Figure 4). The corresponding results given by
Yue and Selvadurai [25] are denoted by circles in Figure 5. The agreement is very good (less than
4% when t*>10� 2) except for the case, ν=0, νu=0.5. The discrepancy becomes very large near
the initial and final responses (see Table II).

The effect of Poisson’s ratio on the consolidation rate for Case II is presented in Figure 6. As
observed in Figure 5, the consolidation rate increases as νu decreases when ν is fixed as 0, while the
consolidation rate increases as ν increases when νu is 0.5 (see also Figure 4). The corresponding
results given by Yue and Selvadurai [25] are denoted by circles in Figure 6. The agreement between
Figure 6. Consolidation rates for different Poisson’s ratios when the surface is completely impervious.

Figure 5. Consolidation rates for different Poisson’s ratios when the surface is completely pervious.
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the present results and the results given by Yue and Selvadurai [25] is again good with maximum error
of 6% except for the case ν=0, νu=0.5.
7. CONCLUDING REMARKS

Contact problems for the poroelastic halfspace involve mixed boundary conditions at the plane surface
of the halfspace in terms of the displacements, stresses and pore fluid pressure. The solution procedures
for the mixed boundary conditions involve a set of dual integral equations in the Laplace transform
domain that cannot be solved using a conventional integral transform (Hankel and Laplace
transforms) approach. An alternative approach, where the contact stress is discretized into



APPENDIX B

The final expressions for the displacement in the z-direction are given by

Case I: The entire surface is completely permeable

uz r; z; tð Þ ¼ p*a*
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