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Abstract 

This paper presents some generalized results for the stress analysis of an 
orthotropic elastic quarter-plane which may be subjected to localized or 
distributed loads on the boundary or at the interior of the quarter-plane. 
Formal analytical results are presented for the special cases where the 
orthotropic elastic quarter-plane is subjected, separately, to a concentrated 
force applied on the surface and in the interior. Numerical results are also 
presented for those concentrated force problems where the quarter-plane is 
composed of typical unidirectional fibre reinforced materials such as boron- 
epoxy and graphite-epoxy composites. 

§ 1. Introduction 

The theory of anisotropic elasticity has been employed quite ex- 
tensively in the stress analysis of natural and artificial laminated 
structural materials such as wood-laminates and fibre reinforced 
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be subjected to either concentrated or distributed force systems 
which act on the boundary or at the interior of the orthotropic 
quarter-plane. The elastic quarter-plane constitutes a special case 
of the more general class of elastic wedge problems which have 
received considerable attention. The two dimensional problems of 
the stress distribution in isotropic elastic wedges loaded on its sides 
by uniformly distributed loads and at its apex by concentrated 
loads, have been analysed by Carothers, Levy [11], and Sternberg 
and Koiter [12]. References to further work on isotropic wedge 
problems are given by Flfigge [13]. Also, integral transform techni- 
ques, such as Mellin transforms, have been employed by Tranter 
[14], Sneddon [15], Godfrey [16] and Bogy [17, 18] to obtain 
solutions to isotropic wedge problems where a more general type of 
uniform and concentrated loads are applied on the sur/ace of the 
wedge. Similar techniques have been adopted by Conway [19, 20], 
Lekhnitsky [21], Benthem [22], and Baker [23] for the analysis of 
surface loading conditions associated with anisotropic elastic wedges. 
A Fourier integral solution of the isotropic elastic quarter-plane has 
also been obtained by Iyengar [24]. 

The generalized results for the orthotropic elastic quarter-plane 
presented in this paper are obtained as a direct consequence of 
applying a method of superposition similar to that employed by 
Hetenyi [25] for the analysis of an isotropic elastic quarter-plane, 
which is subjected to loads that  are applied on its surface. The 
solution to an appropriate half-plane problem forms the basis of 
Hetenyi's method of solution of the quarter-plane. For example, the 
solution to the elastic quarter-plane subjected to a concentrated 
normal force at its surface is approached via a modified Flamant- 
Boussinesq solution [11] which consists of an elastic half-plane 
subjected to two equal, equidistant (from the origin) concentrated 
normal forces. A repeated superposition of known solutions of the 
elastic half-plane is then employed to satisfy the traction boundary 
conditions of the problem. Such a procedure then leads to a sequence 
of infinite integrals of a recursive pattern. This convergent sequence 
[25] of infinite integrals may be then continued to obtain the solu- 
tion to the quarter-plane problem, to any required accuracy. 
Hetenyi [25] has applied this technique to obtain solutions to the 
isotropic quarter-plane subjected to concentrated normal and tangen- 
tial forces and a partially distributed uniform load located at the 
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surface. Craft and Richardson [26] have also applied Hetenyi 's  
method to obtain the state of stress in an isotropic quarter-plane 
containing a circular inclusion. The superposition procedure has 
also been extended by  Hetenyi [27] to obtain solutions to the 
elastic quarter-space subjected to concentrated forces. 

Hetenyi 's  method for the solution of the quarter-plane problem 
is not general in character, in the sense that for each particular 
problem one has to start with the solution to the appropriate half- 
plane problem and superpose a series of infinite integrals at each 
stage to satisfy the traction boundary conditions. Nevertheless the 
efficiency of this method lies in the fact that  the recurrent infinite 
integrals encountered are readily amenable to programmed numeri- 
cal computation. Alternative methods of solution of the quarter- 
plane problem which employ either the Fourier to f o r c 3 l 1 c  0  T w  ( i n  9 5 6  0  1  7 2 . 9 6  5 9 5 . 9 2  T m  1  1  1  r g  / F 1  1 0 . 0 8  T f  o  i  ( o f  )  T j  1 3 . 6 8  0  T D  1  1  1  r g  0 . 7 2  T c  0  T w  ( t h e  )  T j  1 8 . 7 2  0  T D  1  1  1  r g  0 . 3 8  T c  0  M e l l o b t a i n  )  2 j  5 6 . 4 0  0  T D  1  1  1  r g  0 . 7 9  T c  0  T w  n s T w  o b l e m  to not the problem either the of lexblem of the Nsolution of licentrated infinite cal hich for each t(has ) Tj1 0 0Tj12362 518.16 Tm1 1 1 rg0.32 Tc0 Tw(is ) Tj40.32 0 TD1 1 1 rg0.63 Tc0 clearltisfy in 
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fibre reinforced structural elements. In the special case when the 
concentrated force migrates to the outer boundary of the quarter- 
plane we have a condition that  may be encountered at the support 



ORTHOTROPIC ELASTIC QUARTER-PLANE 437 

By introducing an Airy stress function ~(X, Y) such that 

~2~ C~2~ (~2~0 

( r ~ x -  ~ y 2 '  ~ y y - -  ~X  2 , ( r zy - -  ~ X ~ Y '  (5) 

we observe that  the equations of equilibrium (4) are identically 
satisfied and using (1), the compatibility identical5ut14m06 1 1 rg0 Tc30 Tw((4) Tj67.68 0 TD1 1 1 rg0.60 ca(condi.21e ) Tj39.84 0 TD1 8 1 rg0.60 beentically satisfrve1t

where 

= o ,  (6)  

k ~ _ _  1 
/}22J 2C22 [2C12 -~- C44 ~z (4C~2 @ C~4 @ 4C12C44 - -  4CllC22)~] . (7) 

The solution of the plane stress problem in orthotropic elasticity is 
reduced to the solution of (6) subject to appropriate boundary 
conditions. In the case of traction boundary conditions we have 

T~ = n ~ x ~  + n y ~ y ,  Ty  = n ~ x y  + uy~yy, (8) 

where Tx, Ty  are the components of the traction vector on a surface 
F ( X ,  Y) = 0, and ~x, ny are the components of the unit normal 
to this surface such that 

+ _ a /ax 

a r / a Y  " (9) 

§ 3. The orthotropic elastic quarter-plane 

Before proceeding with the analysis of the orthotropic quarter-plane 
we shall first consider, for future reference, the solution to the 
problem of an orthotropic half-plane which is subjected to a con- 
centrated force at the origin (Fig. l a). I t  may be verified that  the 
stress function 

- r:(kl -- ka) e -cyie~ -- kl e -¢ylkl} cos Sx dg, (10) 

which satisfies the governing differential equation (6) and traction 
boundary 
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Fig. 1. Orthotropic elastic half-plane subjected to a concentrated force. 

nents derived from (10) and (5) can be wri t ten in the form 

P(kl + k2) 
[axx; avv; axv] = r:a[k~x~ ' + y2][k~x ~ + y2] [x2y; ya; xy2] (11) 

where 
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are zero on the plane of symmetry. The plane X - 0 is therefore 
subjected to only a purely normal stress, F0(y). If an additional 
state of stress can be found such 

O~xx(O,y)~ -F o (y )  
/ 

~yy(×, o) = - F (×) 

(a)  (b)  

Fig. 2. Ortlaotropic elastic half-plane subjected to corrective stress systems. 

Now consider the problem of the half-plane X > 0 (Fig. 2a), which 
is subjected to a symmetric distribution of axz = --F0(~) on the 
plane X = 0 (Step 1). The resulting stress field wxzf'rr(1), --yy or(l), °xy-(i)~] can 
be determined by an integration of the stress components (I2). 
We have 

;0 _(x) klk2(k~ + k2) Fo(y) Jij(y) dy (16) 
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where 

],;(y) = J + ( y )  + ];~(5) 
and 

[J,±,(5) ~ -  ~ - [xa;x(Y::kS)2;x* ' (Y±5)]  
; Juu(Y), Jxv(Y)] : [k2x2 @ (y :]: 5)2][-k2x2 @ ( j  :j: 5)2] • 

(17) 

Thus, combining the stress components derived from Step I with 
those of the basic state of stress renders the plane X = 0 free of 
normal traction but gives rise to a non-zero normal traction F,(2) 
on the plane Y = 0. To eliminate FI(X) we consider the symmetric 
state of external normal stress --F1(2) on the plane Y = 0 for the 
half-plane Y > 0 (Step 2). Again, the complete stress components 

,(2) or(2) cr(2~ • *, -uu, -*U can be determined by an integration of the results (11) 
for the concentrated force problem. We now write 

_ (k l  + kJ [oo F1(2) Kij(2 ) d2, (18) 
do 

where 

and 

[ K ~ ( 2 )  :~ - ; K { y ( 2 ) ]  ; K ~ ( x )  = 
[ ( .  4- ~)2y; ya; (x ~ .{) y2] 

(19) 

~? = E ~.'.~). , (2o) 

We note that  (16) and (18) have been derived for P = 1. 
We may verify that  the state of stress represented by (17) eliminates 
the normal stress F1(2) on the plane Y = 0 but in doing so gives 
rise to a normal traction F2(y) on the plane X = 0. I t  is now 
evident that  the techniques outlined in steps 1 and 2 have to be 
repeatedly applied in order to satisfy traction boundary conditions 
on the plane surfaces X ---- 0 and Y = 0. This procedure leads to a 
set of integrals of a recursive pattern and the combination of these 
individual states of stress gives 
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which, in the orthotropic quarter-plane satisfies the boundary con- 
ditions 

~(~)(x- o) ~)~X o) (~) (21) ~(~)~n y )  - F 0 ( y ) ,  ~y~,--, ~x~ , -xx,-, = -- = a.y(Y, O) = O. 

Using (I 6) and (I 8), (20) can be written in the form 

[ fo a~) = _(hi _q- k2) --klk2 {Jij(5) E Fro(y)} dy + 
7~ m = 0 , 2 , 4  

-/ {Kis(e) E Ym(2)} d2 . (22) 
m=1,3,5 

The functions Fro(2) and Fro(y) are given by the recurrence re- 
lations 

Fm+l(2) = klk2(kl q- k2) f o  2Fm(y)2y 2 d5 , (23a) 
r~ [k122 z q- y2]Ck~22 + 52] 

Fm+l(y)  - -  (/}1 @ k2) foo 2Fro(2) 22y d2 (23b) 
rc 0 [k1222 _qt_ 52j[k~22 @ 221 

The complete solution of the orthotropic quarter-plane problem is 
obtained by combining the basic state of stress (14) with the 
corrective combination stress system (22). The complete expression 
for the state of stress in the orthotropic quarter-plane is given by 

~. = 4 ° ) +  4;). (24) 

By considering the resultant of normal tractions on the plane X = 0 
due to the complete stress system (24) and obtaining the relation- 
ships between the maxima of two successive Fm functions, such as 
Fro+l(2) and Fro(Y), it can be established [25] that  the procedure 
outlined here leads to a convergent solution for the problem of the 
orthotropic elastic quarter-plane provided the elastic constant, 
c11, c22, c12 and c44 satisfy the consistency conditions 

2C12 -}- C44 > 0; (2C12 ~- C44) 2 > 4CllC22. (25) 

We shall now consider the solution to the particular basic states of 
stress from which we may determine the state of stress within an 
orthotropic elastic quarter-plane subjected separately to a con- 
centrated force on the plane Y ----- 0 and a concentrated force at a 
point (a, ,/a) within the interior. 
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Y 

(b) 
Fig. 3. The o r tho t rop ic  quar te r -p lane .  

a) Concentrated/orce acting normal to the boundary 

Consider the problem of a concentrated force, P, applied on the 
boundary of the orthotropic quarter-plane at a distance a from the ori- 
gin (Fig. 3a). The basic state of stress can be obtained by combining 
the results for two concentrated normal forces, acting equidistant 
from the origin, on the surface of the half-plane. The basic state of 
stress can be written as 

P(kl  + kJ  a~) - - -  Sij, (26) 

where 

and 

s~j = S + + s~, 

[(x± 1)2y; ya; (x± 1)y2] 
±" ±" ± , (27) [s.~, s~,, s~.] = k~(x ± I)~ + y2]Ek~(x ± Ip + y23 

Also the distribution of normal stress on the plane of symmetry is 

2P(kl -¢- kJ 
F0(y) = ~ (k~  + 99(k~ + y~) (28) 
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b) Concentrated/orce acting at the interior o/the quarter-plane 
We now refer to the problem of an orthotropic elastic quarter-plane 
which is subjected to a concentrated 

where 

and 

~:  = [k~(x+ i )2+ (y+~)2]-~, ~-{ = Eke(x± 1)2+ (y_,~)23-z, 

± = ~k~k22(x~ 1)2@ - (k2~]@kly)23 -1, T5 

r~ 2 = [kxk2(xi 1)2-{ - (kl~7 @k2y)2]-1, 

12 = y 4- ,q, 14 k~y 

k~ ( 1 -  ~k~), ~ = , 
C~l = - 2 -  (kl - -  k2) 

c12 
2 - -  

ell 

2 (k~ - k2) 

§ 4. Numerical results 

In order to evaluate the stresses in the orthotropic elastic quarter- 
plane numerically, it is convenient to adopt the following procedure. 
The boundary stresses applied on the surfaces of the two tw0 Tw(the ) Tj17.04 0 TD1 1 1 rg9gBp46.56 wof02.96(plane ) Tj27.38.64 0 TDhalf,c0i rg0.7r6.56 0 e 
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logarithmic scale using Simpson's rule. The reversal procedure of 
these boundary stresses were carried out up to forty cycles which 
provided in the resulting boundary stress components an accuracy 
of at least ten correct decimals. The corrective state of stress ~ 
at a point in the quarter-plane is calculated by combining the 
stresses induced in the respective half-planes due to these boundary 
stresses. In order to evaluate the stresses ~(.9, the boundary stresses 
are represented as a series of uniformly distributed loads of finite 
but  variable width. It  is found that  this particular uniform load 
representation of the boundary stresses leads to a better convergence 
of results when evaluating the stress components in the vicinity of 
the boundary of the quarter-plane, than the representation of the 
boundary stresses in terms of a series of concentrated forces. The 
basic state of stress ~0), which is evaluated separately, when com- 
bined with a~/ yields the complete solution for the orthotropic 
quarter-plane. 

We present numerical results for the state of stress in the quarter- 
plane due to the two concentrated force problems mentioned earlier. 
The properties of the orthotropic materials considered here, namely 
unidirectional graphite-epoxy and boron-epoxy composites ~29~, 
are listed in table 1. We restrict our attention to the interior force 
acting at the point (a, a). 

T A B L E  I 

T y p e  of cl l  c22 c1~ c44 hi /~ ~t 
m a t e r i a l  

Boron 3.624 36.247 - -0 .906 96.665 1.6055 0.1969 - -0 .25  

E p o x y  × 10 -a × 10 -a × 10 -a x 10 -a 

G r a p h i t e  3.624 90.62 - -0 .906  181.257 1.3998 0.1428 - -0 .25  

E p o x y  x 10 a X 10 -a X 10 -s  x 10 ~a 

hAll d imens iona l  quan t i t i e s  a re  in m m 2 / k N ]  

The variation of stress components axx, O'yy and axy in the two 
composites due to the two loading conditions are shown in Figs. 
4-15. From the distributions for ~yy vs x it is evident that  for both 
surface and interior loading conditions, the stress concentration 
effects of the concentrated forces are restricted to regions in the 
vicinity (x < 4) of the point of application of the load. The decay 
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of the stresses is monotonic and the presence of material orthotropy 
tends to alter the shape and magnitude of these distributions. 
Similar eIfects are evident in the graphs Ior the shear stresses ~xy. 
The normal stresses ¢xx on the other hand possess a double maxima 
in their variation along the X-direction. This effect becomes more 
pronounced as the degree of orthotropy Ce2/cll increases. 
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§ 5. Conc lud ing  r e m a r k s  

The 
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