|            | DITERNATIONAL IO | UDNAL FOR NUMERIC | CAL AND ANALYTICA | WETHORS IN OFOI | MEQUANION NOT | 10 622 652 (10 |  |
|------------|------------------|-------------------|-------------------|-----------------|---------------|----------------|--|
| L.         |                  | t                 |                   |                 |               |                |  |
|            |                  | •                 |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
| <b>k</b> . |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
| 1          |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
| •          |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |
|            |                  |                   |                   |                 |               |                |  |

Ł



1

2.2

|                 | (00 |
|-----------------|-----|
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
| · · · •         | -   |
| <b>.</b>        |     |
|                 |     |
| (, <u>16</u> .4 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
| k               |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
| l 8 Þ-          |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |
|                 |     |







Finnes 4. Computing displacements of the sigid alliptical disc anabor.

|          |      |  |   |   | _ |
|----------|------|--|---|---|---|
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
| <u>t</u> |      |  |   |   | _ |
|          | A.=* |  |   | * | _ |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  | * |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |
|          |      |  |   |   |   |

can be obtained in the form



Thus (19) can be written in the form

$$\{\mathbf{F}\} = -\begin{bmatrix} c_{11} & c_{12} & 0 & 0 & 0 & 0\\ c_{21} & c_{22} & 0 & 0 & 0 & 0\\ 0 & 0 & c_{33} & c_{34} & 0 & 0\\ 0 & 0 & c_{43} & c_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & c_{55} & 0\\ 0 & 0 & 0 & 0 & 0 & c_{66} \end{bmatrix} \begin{bmatrix} v_1\\ \omega_2\\ v_2\\ \omega_1\\ v_3\\ \omega_3 \end{bmatrix}$$
(22)

This formally completes the houndary element enclusio of the problem of a rigid elliptical disc





|                                                                                                                 | Rounds for the axial elastic stiffness | Considering the techniques pres | anted in the preceding |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|------------------------|
| ł                                                                                                               |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
| -                                                                                                               |                                        |                                 |                        |
| <u>}</u>                                                                                                        |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        | A                               |                        |
|                                                                                                                 |                                        |                                 |                        |
| line in the second s | <u> </u>                               |                                 |                        |
|                                                                                                                 | 61 ·                                   |                                 |                        |
|                                                                                                                 | A1.*                                   |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 | A                                      |                                 |                        |
|                                                                                                                 | A1*                                    |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 | A1*                                    |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |
|                                                                                                                 |                                        |                                 |                        |

where C is an arbitrary constant and  $e_0^2 = (a^2 - b^2)/a^2$ . The variable u is related to the ellipsoidal co-ordinate  $\xi$  by

$$\xi^2 = a^2(sn^{-2}u - 1) \tag{53}$$

$$E(u) = \int_0^u \mathrm{d}n^2 t \,\mathrm{d}t \tag{54}$$

The quantities snu, dnu, etc., represent the Jacobian elliptic functions<sup>13</sup> which have real and imaginary roots 4K and 2*i*K, respectively, corresponding to the moduli  $e_0$  and  $e_0^1 = b/a$ . It may also be noted that  $E(e_0)$  is the complete elliptic integral of the second kind.<sup>12</sup> Considering the hound of the second kind.<sup>12</sup> Considering the hound of the second kind.<sup>13</sup> Considering the hound of the second kind.<sup>14</sup> Considering the hound of the second kind.<sup>14</sup> Considering the hound of the second kind.<sup>15</sup>

| th.                                   |          |  |  |
|---------------------------------------|----------|--|--|
|                                       |          |  |  |
|                                       | s        |  |  |
| ·                                     |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       | L        |  |  |
|                                       | L        |  |  |
| - <b>Á</b> - <b>Á</b>                 | <u> </u> |  |  |
| · · · · · · · · · · · · · · · · · · · |          |  |  |
|                                       |          |  |  |
|                                       | L        |  |  |
|                                       |          |  |  |
| · · · · · · · · · · · · · · · · · · · |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |
|                                       |          |  |  |





## **RIGID ELLIPTICAL ANCHOR**

|             | pnrovine to colution (67) by vistue of the imposed constraint on a (given by (62)). Again the |
|-------------|-----------------------------------------------------------------------------------------------|
|             |                                                                                               |
|             |                                                                                               |
| ļ           |                                                                                               |
| 8           |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
| <u>19</u> 0 |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
| · ·         |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |
|             |                                                                                               |



variables:

$$\bar{F}_{z} = \frac{F_{z}}{4\pi a \,\Delta_{z} (G_{1} + G_{2})/K(e_{0})} \tag{70a}$$

$$F_{x} = \frac{F_{x}}{4\pi a \,\Delta_{x} (G_{1} + G_{2}) e_{0}^{2} / 3 [K(e_{0}) - E(e_{0})]} \tag{70b}$$

$$\bar{F}_{x}^{*} = \frac{F_{x}}{4\pi a^{2} \Omega_{y}^{*} (G_{1} + G_{2}) e_{0}^{2} / 3 [K(e_{0}) - E(e_{0})]}$$
(70c)

$$\bar{M}_{y} = \frac{M_{y}}{4\pi a^{3} \Omega_{y} (G_{1} + G_{2}) e_{0}^{2} / 3 [K(e_{0}) - E(e_{0})]}$$
(70d)

$$\bar{M}_{z} = \frac{M_{z}}{4\pi a^{3} \Omega_{z} (G_{1} + G_{2}) / K(e_{0})}$$
(70e)

where  $K(e_1)$  and  $E(e_2)$  are complete elliptic integrals of the first and second kind. The reciproced

| · · · · · · |     |  |  |
|-------------|-----|--|--|
|             | · · |  |  |
|             | · · |  |  |
|             | ·   |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |
|             |     |  |  |



G<sub>2</sub>∕G<sub>1</sub>



the bounds converge to a single result which agrees quite accurately with the boundary element estimate. Similar conclusions apply, in general, for the results for the non-dimensional rotational stiffness  $\overline{M}_y$ . Since the bounds for the axial stiffness are identical to the bounds for the rotational stiffness, the following relationship may be used to derive  $M_y/\Omega_y a^2$  from  $F_z/\Delta_z$ :

$$\frac{M_{y}}{\Omega_{y}a^{2}} = \frac{F_{z}K(e_{0})e_{0}^{2}}{3\Delta_{z}\{K(e_{0}) - E(e_{0})\}}$$
(71)

Relationship (71) applies only for the bounding estimates.

Figure 11 illustrates the boundary element results for the non-dimensional translational stiffness



|           | -6 <u>50</u> |          |
|-----------|--------------|----------|
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
| · · · · · |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              | <u>.</u> |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
|           |              |          |
| -         |              |          |
|           |              |          |



<u>.</u>

**RIGID ELLIPTICAL ANCHOR** 

651

## ACKNOWLEDGEMENTS

The authors would like to thank the referees for their very valuable comments which led to

