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SUMMARY 

The present paper examines the class of problems related to a flat rigid anchoring region which is embedded 
at a geological interface. The analysis focuses on the evaluation of the elastic stiffness of the embedded 
anchor. A boundary element technique is used to estimate the axial, rotational and translational stflnesses 
of the anchor. These estimates are compared with a set of bounds which are evaluated in exact closed 
form. These bounds are obtained by invoking kinematic and/or traction constraints at the geological 
interface. The numerical results presented in the paper illustrate the manner in which the various stiffnesses 
of the anchoring region are influenced by the elastic properties of the surrounding geological media. 

INTRODUCTION 

Problems which deal with rigid or flexible objects embedded in elastic media are of importance 
to geomechanical applications. The embedded inhomogeneity serves as a useful mechanical 
model of a foundation or an anchor region deeply embedded in the geological material. Several 

have therefore examined problems related to the loading of objects embedded 
in elastic and transversely isotropic elastic media. In this paper, we examine the group of problems 
related to the generalized loading of a rigid flat anchor with an elliptical planform which is 
embedded at a bi-material elastic interface. Such a flat rigid anchoring region can be formed at 
a bi-material geological interface by hydraulic fracturing effects of pressure injected grouting 
(Figure 1). The rigid anchor region represents the hardened cement grout or a resinous material. 
The elastic stiffness of these anchoring regions is important to the estimation of the efficiency 
of the anchoring system. 

The present paper focuses on the determination of the axial, rotational and translational 
stiffnesses of a rigid elliptical disc anchor which is embedded in bonded contact at a bi-material 
geological interface. The elliptical planform is a convenient geometrical shape which can be used 
to model an anchor region obtained by fluid-induced fracture or separation of the interface. The 
choice of an elliptical anchor geometry, however, makes the analytical solution of the elastostatic 
boundary value problem inordinately complicated. The exact formulation of the linear elastostatic 
problem related to rigid disc anchor embedded at a bi-material region yields a complicated set 
of simultaneous singular integral equations which cannot be solved in an exact fashion. For this 
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Figure 1. Disc-shaped anchor zones embedded at bi-material geological interfaces 

reason it is desirable to explore alternative methods which can be employed to estimate the 
elastic stiffness of the anchor embedded at the bi-material interface. To this end the boundary 
element technique is used to evaluate the stiffnesses of the rigid anchor embedded at the bi-material 
interface. These numerical results are compared with a set of analytically 
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Figure 2. Rigid disc-shaped elliptical anchor region embedded at a bi-material elastic interface 

system. The displacement equations (2) can be solved by using a variety of stress and displacement 
function techniques. Detailed accounts of these representations are given by Truesdell,' Gurtin' 
and G l a d ~ e l l . ~  For example in the generalized Papkovich-Neuber representation the solution 
for uv) can be expressed in terms of four stress functions #) and &) in the form 

2G,&) = (3 - 4~34p) - X& - #,'[ (3) 
where x1 = x, x2 = y and x2 

= 

x1 [(OnTj
/-177 )Tj
--167placement 
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Figure 3. Boundary element discretizations 

1 cx 

where $) is the outward unit normal to the surface in the region rz. In the class of problems 
considered in this paper, the rigid elliptical anchor is embedded in full bonded contact at the 
bi-material elastic region. In the anchor region the displacements are prescribed; i.e. 

uj”(x,y,O+) = up(x,y,o-) = S,(x,y);  (x ,y )d*  (6) 
where S,(x,y)  are the prescribed displacements. The superscripts ( )+ and ( )- refer to the 
variables associated with the halfspace regions z > 0 and z < 0, respectively. For complete 
continuity in the exterior bi-material interface (3) 
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Figure 4. Generalized displacements of the rigid elliptical disc anchor 

In general, the displacement vector at any point within the anchor region can be represented 
in the form 

ui = I)i + E i j k a f k  (8) 
where &ijk is the alternating tensor; rk = (xk - x:); ui is the translation vector of the rigid anchor 
at the location x: and oi is the rotation vector of the rigid anchor about the Cartesian axes 
located at x:. For a disc anchor which occupies the region S* located at the bi-material interface 
(x3  = z = 0), the displacement at any point ( x , y ) ~ S *  can be written in the matrix form 

where 

and 
1 0 0 0  

0 0 1 y - x  0 

The physical interpretations of ui, bi and wi ( i  = 1,2,3) are given in Figure 4. 

THE ELASTIC STIFFNESS MATRIX FROM BEM 

The elastostatic boundary element formulation for a bi-material region is given by Brebbia'' 
and Banerjee and Butterfield." A complete matrix equation can be expressed in relation to 
variables associated with respective boundary regions S(l), S(2) ,  s and S*, i.e. 

where the and [MI matrices are, respectively, the integrations of the tractions and the 
displacement fundamental solutions over the element. The displacements at the anchor surface 
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{F} = - 

Thus (19) can be written in the form 
- 

639 

-cli c12 0 0 0 0- 
CZl c22 0 0 0 0 
0 0 c33 c34 0 0 
0 0 c43 c44 0 0 
0 0 0 o c , , o  
0 0 0 0 0 c66. 

This formally completes the boundary element analysis of the problem of a rigid elliptical disc 
shaped anchor embedded at an elastic bi-material geological interface. The boundary element 
discretization of the bi-material region containing the rigid elliptical anchor is shown in Figure 3. 
The locations of the outer boundaries S(l) and S(') are made sufficiently large to simulate 
approximately the response of a halfspace region. This is achieved by calibrating the boundary 
element results with known exact solutions for certain anchor problems related to an infinite space 
region. At the interface region near the boundary of the anchor, the boundary element mesh is 
refined to take into account high stress gradients induced by the rigid character of the anchor. No 
attempt is made to incorporate any stress singularities applicable to bi-material regions, at the 
boundary of the rigid anchor. These investigations are relegated to further studies. In the present 
paper, constant triangular elements have been used in the boundary element formulation. The 
singular integrations over the local elements can be obtained very accurately by using an analytical 
mean. Furthermore, smaller elements have been used near the edge of the rigid anchor region in 
which high stress gradients are expected (Figure 3b). Also, it may be noted that in terms of the 
approximate evaluation of the stiffness of the rigid anchor, the contributions from the singular 
points are expected to be relatively small. 

APPROXIMATE BOUNDS FOR THE ELASTIC STIFFNESSES O F  THE 
EMBEDDING ELLIPTICAL ANCHOR 

In this section we shall outline analytical techniques which can be used to provide either sets 
of bounds or approximate estimates for the elastic stiffnesses of the rigid elliptical disc anchor 
embedded at a bi-material geological interface. These results will be used to estimate the relative 
accuracy of the boundary elements modelling of the problem. The stiffness bounds are obtained 
for the cases in which the rigid elliptical anchor is subjected to a rigid body displacement A, in 
the z-direction and a rigid body rotation n, about the y-axis. We shall also record here an 
approximate solution for the stiffness of the anchor which is subjected to a rotation free rigid 
body translation A, in the x-direction. In the ensuing, attention is focused on the analytical 
derivation of the bounds that are applicable for the rigid displacement of the anchor in the 
z-direction. The bounds and/or results for 
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Figure 5. Upper and lower bound models for the analysis of the embedded anchor 

to be rigid and the interface is considered to be inextensible, the conditions pertaining to 
displacements and tractions on S (= S* u3) are as followsz4qa. 1.$264 Tc 8.5 0 0 12 80h 

u:yx, y, 0) = uf’(x, y, 0 )  = 0; 
UY’(X, y, 0) = u;zyx, y, 0) = 0; 
u$”(x, y, 0) = upyx, y, 0); 

(X,Y)ES 

(X, Y)ES 
(x, Y)ES 

and 

For the category o f  deformations which satisfy the constraints (23) and (24), the displacement 
and stress fields can be represented in terms of a single function Y“”’(x,y,z) (a = 1,2) such that 

a w a )  
up’ = - (3 - 4vJW“’ + z - 

a2 
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Bounds for the axial elastic stiffjress. Considering the techniques presented in the preceding 
sections, it can be shown that the axial load displacement response of a rigid elliptical disc 
inclusion embedded in bonded contact at a bi-material elastic interface can be presented in the 
form of the 
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stiffness of the elliptical rigid 
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approximate solution (67)’ by virtue of the imposed 
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stiffness properties of the rigid elliptical anchor region. In the presentation of the numerical 
results, the effect of the anchor geometry is incorporated as a scale factor. The normalized forms 
for the load-displacement relationships are, in general, derived from the results obtained via the 
analytical techniques. Figure 6 illustrates the generalized displacements that are associated with 
the elliptical anchor embedded at the bi-material geological interface. For purposes of present- 
ation of the numerical results it is convenient to introduce the following nondimensional 
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Figure 7. Axial stiffness of a rigid elliptical anchor embedded in a homogeneous geological medium 1.0 
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variables: 

- F X  

F' =4na2f2;(G1 + G2)e;/3[K(eo) - E(eo)] 

where 
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Figure 10. Axial stiffness of a rigid elliptical anchor embedded at a bi-material geological interface 

be suficient for engineering purposes, can be further reduced by using a refined boundary element 
discretization. In the ensuing numerical investigations, the boundary element discretization shown 
in Figure 3 is used. 

Figure 10 illustrates the manner in which the normalized axial stiffnesses F, of the rigid 
anchor are influenced by the elasticity mismatch between the two geological media. It is evident 
that the bounds developed via the analytical schemes provide suitable limits for the stiffnesses. 
As the Poisson's ratios of the geological media approach the limit of incompressibility (v. = 1/2), 
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the bounds converge to a single result which agrees quite accurately with the boundary element 
estimate. Similar conclusions apply, in general, for the results for the non-dimensional rotational 
stiffness a,. Since the bounds for the axial stiffness are identical to the bounds for the rotational 
stiffness, the following relationship may be used to derive My/Q# from FJA,: 

Relationship (7 1) applies only for the bounding estimates. 
Figure 1 1 illustrates the boundary element results for the non-dimensional translational stiffness 
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Fiaun 11. Translational sti!Ynes of a rigid elliptical anchor embcddcd at a bi-material plogicd interface 
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of the elliptical rigid anchor embedded in a bi-material geological interface. The results for the 
single analytical estimate agree quite accurately with results of boundary element computations. 
The results for the torsional stifFness of the rigid elliptical anchor embedded at the geological 
interface are shown in Figure 12. Finally, Figure 13 illustrates the manner in which the elasticity 
mismatch between the geological media and the respective Poisson’s ratios influence the coupling 
stiflness F:; these results are obtained via the boundary element technique. 
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Torsional stiffness of a rigid elliptical anchor embedded at a bi-matcrial geological interface 
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Figure 13. Coupling stiffness (rotation due to lateral force of a rigid elliptical anchor embedded at a bi-material 
geological interface 






