A. P. S. Selvadurai ZAMP

......

and

$$\nabla^2 \psi(r,\theta,z) = 0 \tag{2}$$

where  $\nabla^2$  is Laplace's operator referred to the generalized cylindrical polar coordinate system. The displacement and stress components referred to the cylindrical polar coordinate system can be expressed in terms of  $\varphi(r, \theta, z)$  and  $\psi(r, \theta, z)$  in the following forms:

$$2 G u_r = -\frac{\partial^2 \varphi}{\partial r \partial z} + \frac{2}{r} \frac{\partial \psi}{\partial \theta}$$
(3)

$$2 G u_{\theta} = -\frac{1}{r} \frac{\partial^2 \varphi}{\partial \theta \partial z} - 2 \frac{\partial \psi}{\partial r}$$
(4)

$$2Gu_z = 2(1-v)\nabla^2 \varphi - \frac{\partial^2 \varphi}{\partial z^2}$$
(5)

and

$$\sigma_{rr} = \frac{\partial}{\partial z} \left( v \, \nabla^2 - \frac{\partial^2}{\partial r^2} \right) \varphi + \frac{\partial}{\partial \theta} \left( \frac{2}{r} \frac{\partial}{\partial r} - \frac{2}{r^2} \right) \psi \tag{6}$$

$$\sigma_{\rho\rho} = \frac{\partial}{\partial r} \left( \nu \nabla^2 - \frac{1}{2} \frac{\partial}{\partial r} - \frac{1}{2} \frac{\partial^2}{\partial r^2} \right) \omega - \frac{1}{2} \frac{\partial}{\partial r} \left( 2 \frac{\partial}{\partial r} - \frac{2}{2} \right) \psi \tag{7}$$

$$\sigma_{zz} = \frac{\partial}{\partial z} \left\{ (2 - \nu) \nabla^2 - \frac{\partial^2}{\partial z^2} \right\} \phi$$
(8)

$$\sigma_{\theta z} = \frac{1}{2} \frac{\partial}{\partial z} \left\{ (1 - v) \nabla^2 - \frac{\partial^2}{\partial z^2} \right\} \varphi - \frac{\partial^2 \psi}{\partial z^2}$$
(9)

$$\partial \left\{ \begin{array}{cc} \partial \left\{ \begin{array}{cc} & \partial^2 \end{array} \right\} & 1 \ \partial^2 \psi \end{array} \right\}$$

| j | -                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   | force T which acts in the $+vex$ direction. The in-plane displacement of the rigid circular inclusion is denoted by $\delta$ . From an examination of the problem, |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |

where  $H_n[f(\xi); r]$  is the Hankel transform of order *n* which is defined by

$$H_n[f(\xi);r] = \int_0^\infty \xi f(\xi) J_n(\xi r) \,\mathrm{d}\xi \,. \tag{24}$$

We now make the assumption that as  $b \to \infty$ , we should recover, from the



tion of a penny-shaped rigid inclusion which is embedded in an uncracked elastic solid. It is convenient to introduce functions  $C(\xi)$  and  $D(\xi)$  such that

$$A(\xi) = \frac{1}{\xi^3} \{ C(\xi) + 2D(\xi) \}$$
(25)

$$B(\xi) = -\frac{1}{\xi^2 (1 - 2\nu)} \{ C(\xi) + D(\xi) \}.$$
(26)

The integral Eqs. (20)–(23) can now be written as

|                                       | Vol. 38, 1987 In-plane loading of a cracked elastic solid by a disc inclusion                            | 679                   |                       |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
|                                       | where $f_2(\infty) = 0$ . With the aid of (34) and (35) we find that                                     |                       |                       |
| <u></u>                               | $2(1 - v)D(\xi) = \int_{0}^{a} f_{1}(t)\cos(\xi t) dt - \int_{0}^{\infty} f_{2}(t)\sin(\xi t) dt.$       | (36)                  |                       |
| ÷                                     | <u> </u>                                                                                                 |                       |                       |
| w <del></del>                         |                                                                                                          |                       |                       |
| <u> </u>                              |                                                                                                          |                       |                       |
| ·                                     |                                                                                                          |                       | ,                     |
| 1.                                    |                                                                                                          |                       |                       |
| 1                                     |                                                                                                          |                       |                       |
|                                       |                                                                                                          |                       |                       |
| <u> </u>                              |                                                                                                          |                       |                       |
|                                       |                                                                                                          |                       |                       |
|                                       | $\frac{\partial}{\partial r} \int_{0}^{\infty} D(\xi) J_{0}(\xi r)  \mathrm{d}\xi = 0;  b < r < \infty.$ | (37)                  |                       |
|                                       | By upbotitutions the value of D(E) from (26) into (27) we obtain a                                       | n intarnal            |                       |
|                                       |                                                                                                          |                       |                       |
|                                       |                                                                                                          |                       | 1                     |
|                                       | 5<br>5                                                                                                   | ٤                     |                       |
|                                       | 3<br>3                                                                                                   | )<br>)<br>)<br>)<br>) |                       |
|                                       | ່ <b>ບ</b> ູເ                                                                                            |                       |                       |
| · · · · · · · · · · · · · · · · · · · | * <b>2</b> 2                                                                                             |                       |                       |
|                                       | Υ <b>χ</b> ε                                                                                             | )<br>}<br>}           |                       |
|                                       | Υ <b>χ</b> ε                                                                                             |                       |                       |
|                                       |                                                                                                          |                       |                       |
|                                       | • ge                                                                                                     |                       |                       |
|                                       |                                                                                                          |                       |                       |
|                                       |                                                                                                          |                       |                       |
|                                       |                                                                                                          |                       |                       |
|                                       |                                                                                                          |                       |                       |
|                                       | • • • • • • • • • • • • • • • • • • •                                                                    |                       | ·<br>·<br>·<br>·<br>· |



to its argument. The integral Eq. (40) can be written in the form

$$f_{2}(u_{1}b) = \frac{2c}{\pi u_{1}} \int_{0}^{1} f_{1}(at_{1}) \left\{ 1 + \frac{c^{2}t_{1}^{2}}{u_{1}^{2}} + \frac{c^{4}t_{1}^{4}}{u_{1}^{4}} + \frac{c^{6}t_{1}^{6}}{u_{1}^{6}} + \frac{c^{8}t_{1}^{8}}{u_{1}^{8}} + 0(c^{10}) \right\} dt_{1}; \quad u_{1} > 1.$$
(56)

Using the third equation of (44) and the expression for  $F_1(t_1)$  given by (48) in (56) we obtain the following result for  $f_2(u_1 b)$ :

$$f_{2}(u_{1}b) = \frac{32 G \delta (1-v) (1-2v)}{(7-8v) \pi^{2} u_{1}} \cdot \left[c - 2c^{2}\zeta + c^{3} \left\{4\zeta^{2} + \frac{1}{3u_{1}^{2}}\right\} - 2c^{4}\zeta \left\{\frac{5}{18} + 4\zeta^{2} + \frac{1}{3u_{1}^{2}}\right\}\right]$$

here the accuracy of the series estimates in predicting exact solution to certain limiting cases.

In the limiting case when the radius of the externally cracked region becomes infinite (i.e.,  $c \rightarrow 0$ ), the result (53) reduces to

$$T = \frac{64 G \delta a (1 - v)}{(7 - 8 v)}.$$
(61)

This expression is in agreement with the results obtained, independently by Keer [11]. Kassir and Sih [12] and Selvadurai [13] for the in-plane translational



stiffness of a penny-shaped rigid inclusion embedded in an isotropic elastic solid (Fig. 2a) by making use of potential function methods, ellipsoidal harmonic

function techniques and dual integral equation formulations respectively. For future reference, we note that in the particular instance, when the externally cracked region extends to the boundary of the penny-shaped rigid inclusion (i.e.,

|             | <b>، ک</b> ــــــــــــــــــــــــــــــــــــ | 1, | 1 | <u>د ، ،</u> | <br>·  | L |
|-------------|-------------------------------------------------|----|---|--------------|--------|---|
| <del></del> | /                                               |    |   |              |        |   |
| <u> </u>    |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
| 27          |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        | - |
|             |                                                 |    |   |              |        | 1 |
| ĩ           |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
| 1           |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        | 1 |
| in .        |                                                 |    | - |              |        |   |
|             |                                                 |    |   |              |        |   |
| ,           |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
| 4 <b></b>   |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             | 4                                               |    |   |              |        | N |
| <u></u>     | 4                                               |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
| 1           |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        | · |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
| _           |                                                 |    |   |              | <br>1- |   |
|             |                                                 |    |   |              | <br>   |   |
|             |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |
| 3           |                                                 |    |   |              | <br>   |   |
| • .         |                                                 |    |   |              |        |   |
|             |                                                 |    |   |              |        |   |

## Appendix A

The general expressions for  $m_i(t)$  (i = 0, 1, 2, ..., 5) take the following forms:

|                  | $m_0(t_1) = 1$                        |   |
|------------------|---------------------------------------|---|
|                  | $m_1(t_1) = -2\zeta$                  |   |
|                  | $m_2(t_1) = 4\zeta^2$                 |   |
|                  |                                       |   |
| -<br>;           |                                       |   |
|                  |                                       | 1 |
|                  |                                       |   |
| ; — —<br>; -     |                                       |   |
| ۵ <sub>.</sub> ۴ |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
|                  |                                       | · |
| *,               |                                       |   |
|                  | · · · · · · · · · · · · · · · · · · · |   |
| 5 <b></b>        |                                       |   |
|                  |                                       |   |
| ,                |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
| ί, ιA            |                                       | 1 |
|                  |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
|                  |                                       |   |
| t                |                                       |   |
| Y                |                                       |   |