成人VR视频

Heidi McBride, PhD

Academic title(s): 

Professor

Heidi McBride, PhD
Contact Information
Phone: 
514-398-1808
Email address: 
heidi.mcbride [at] mcgill.ca
Division: 
Neuroscience
Location: 
Montreal Neurological Institute (MNI)
Biography: 

As a member of a multidisciplinary team, Heidi McBride contributes her expertise in the cell biology of mitochondrial dysfunction to the complex pathogenesis of motor neuron and other degenerative diseases. Her laboratory uses various complementary approaches to try to understand why hundreds of mitochondria inside each cell behave as an interconnected group, and what this interaction means to the cell, to tissues and to the body. Mitochondria work as combustion engines, using oxygen to burn fat and sugar. The consequent energy is used in our bodies as fuel. It was long thought that mitochondria performed their function without disturbing the general state of the cell, but recent data has changed this view. Today, mitochondria are seen as extremely dynamic structures that fuse together, branch and split apart.

Mutations in mitochondrial proteins can lead to serious degenerative diseases. The plasticity of these organelles is tied directly to removing damaged sections of protein and lipid. Mitochondrial dysfunction is now linked to the causes of diseases such as Amyotrophic Lateral Sclerosis and Parkinson's disease. By characterizing mitochondrial behaviour, McBride hopes to identify new therapeutic approaches to treating degenerative disease.

McBride's laboratory focuses on three aspects of mitochondrial function. Mitochondrial fusion: The mechanisms to explain how two mitochondria, each with two membranes, can fuse and mix their content. It has been shown that mutations in proteins that regulate mitochondrial fusion lead to a series of neurodegenerative diseases. By expanding our understanding of this process at the molecular level, McBride hopes to contribute to more targeted therapeutic strategies.

Role of SUMOylation in mitochondrial fission and intracellular signaling: The Small Ubiquitin-like Modifier protein, SUMO, can be covalently conjugated to target proteins in a post-translational modification that alters protein function, localization and sometimes turnover. McBride's laboratory uses various approaches to study how SUMOylation functions during mitochondrial fission, cell death and cell division.

Characterization of mitochondrial-derived vesicles: McBride's research found that mitochondria can sort specific protein and lipid cargo into small vesicular carriers, which are delivered to distinct intracellular compartments. This discovery opens new avenues into examining the mechanisms that control these vesicles' formation and transport, as well as into the consequences of pathway failure.

Current research: 

Rare Neurological Diseases聽

Selected publications: 

Matheoud, D., Sugiura, A., Bellemare-Pelletier, A., Laplante, A., Rondeau, C., Chemali, M., Fazel, A., Bergeron, JJ, Trudeau, LE, Burelle, Y., Gagnon, E.,聽McBride, HM*, Desjardins, M*., Parkinson鈥檚 Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell 2016 DOI:聽聽(*co-corresponding authors). CIHR133549

Cadete, VJ, Desch锚nes, S., Cuillerier, A., Brisebois, F.,聽 Sugiura, A., Vincent, A., Turnbull, D., Picard, M.,聽McBride, H., Burelle, Y. Formation of Mitchondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. J Physiol. 2016 Jun 17. doi: 10.1113/JP272703. CIHR133549

Prudent聽J*, Zunino R*, Sugiura A*, Mattie S*, Shore GC,聽McBride聽HM. MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell Death. Mol Cell.聽2015 Sep 17;59(6):941-55. CIHR68833, CCSRI

McBride HM.聽 Open questions: seeking a holistic approach for mitochondrial research. BMC Biol. 2015 Feb 5;13(1):8.

Sugiura A*, McLelland GL, Fon EA,聽McBride HM. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014 Oct 1;33(19):2142-2156. (Review)聽CIHR133549

Norton M, Ng AC, Baird S, Dumoulin A, Shutt T*, Mah N, Andrade-Navarro MA,聽McBride HM, Screaton RA. ROMO1 Is an Essential Redox-Dependent Regulator of Mitochondrial Dynamics. Sci Signal. 2014 Jan 28;7(310):ra10. CIHR43935

*Article chosen for 鈥淧erspective鈥 in聽Sci. Signal.聽7聽(310), pe2, 2014

McLelland GL, Soubannier V*, Chen CX,聽McBride HM*, Fon EA.聽Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control.聽EMBO J. 2014 Jan 20. (*co-corresponding author) HSFO 5769 and BRP

*Article highlighted as 鈥淓ditor鈥檚 Choice鈥 in Science vol 343, issue 6171, page 577, 2014,聽*Article subject of 鈥淗ave you seen鈥 commentary in EMBO J vol. 33 no. 4 277-279, 2014,聽*Article chosen as 鈥淩esearch Highlight鈥 in Nature Rev. Mol. Cell. Biol. 15,150鈥151, 2014,聽*Article selected for F1000 鈥渞ecommended鈥.

Mohanty, A*., and McBride, H.M. Emerging roles of mitochondria in the evolution, biogenesis聽and function of peroxisomes.聽 Frontiers in Neuroscience. 2013 聽Sep 26;4:268. eCollection (Review)聽CIHR 68833

Lefebvre V,聽Du Q,聽Baird S,聽Ng AC,聽Nascimento M, Campanella M,聽McBride HM, Screaton RA.聽Autophagy.聽Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. 2013 Autophagy. Nov 1;9(11):1770-9. BRP聽

Soubannier, V*., Rippstein, P., Kaufman, B.A., Shoubridge, E.A.,聽McBride, HM.聽Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo.聽PLoS One. 2012;7(12):e52830. HSFO 5769

Shutt, TE*,聽McBride, HM. Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response.聽Biochim Biophys Acta. 2013 Feb;1833(2):417-24. (Review)聽CIHR43935

Shutt, T.*, Geoffrion, M., Milne, R., and聽McBride, HM.聽The intracellular redox state is a core determinant of mitochondrial fusion.聽聽EMBO Rep. 2012 Oct; 3(10); 909-915.聽CIHR43935

聽聽聽聽聽聽聽聽聽聽聽 *Article subject of commentary in聽EMBO Rep.聽2012 Oct;13(10):870-1

Soubannier V*, McLelland GL, Zunino R*, Braschi E*, Rippstein P*, Fon EA,聽McBride HM. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes.聽Curr Biol. 24;22(2):135-41, 2012聽 HSFO 5769 and BRP

*Article highlighted in Nature Reviews Molecular Cell Biology 13, 63, 2012.,聽*Article selected for Faculty of 1000 鈥渞ecommended鈥

Back to top