Note: This is the 2011–2012 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
Thesis
Required Courses (15 credits)
-
COMP 616D1 Bioinformatics Seminar (1.5 credits)
Overview
Computer Science (Sci) : Introduction to current trends in Bioinformatics and closely related fields such as genomics and proteomics.
Terms: Fall 2011
Instructors: Hallett, Michael Trevor (Fall)
Restrictions: This seminar is restricted to graduate students in the Bioinformatics Option. Enrolment is limited to 30 students.
Note: The seminar will meet for 3 hours every second week over Fall and Winter semesters.
-
COMP 616D2 Bioinformatics Seminar (1.5 credits)
Overview
Computer Science (Sci) : See COMP 616D1 for description.
Terms: Winter 2012
Instructors: Hallett, Michael Trevor (Winter)
-
PHGY 603 Systems Biology and Biophysics (3 credits)
Overview
Physiology : Introduction to classical and current topics in biophysics and systems biology in order to model the control of gene expression and intracellular signal transduction, as well as gene spread in populations.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
- Prerequisite: Knowledge of differential equations at the MATH 315 level or equivalent.
- Notes: Enrolment is limited to 20 students per semester. The course is 1.5 hours of lecture and 1.5 hours of seminar per week. Readings will focus on classic and current journal articles.
-
PHGY 701 Ph.D. Comprehensive Examination
Overview
Physiology : .
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 702 Ph.D. Proposal (1 credit)
Overview
Physiology
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 703 Ph.D. Progress Seminar 1 (1 credit)
Overview
Physiology
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 704 Ph.D. Thesis Proposal Seminar (1 credit)
Overview
Physiology : Within 6 months of completing the qualifying exam, students will prepare a written research proposal for their dissertation in consultation with their supervisor.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 720 Ph.D. Seminar Course 1 (1 credit)
Overview
Physiology : Required for Ph.D. students. Coordinated in conjunction with the weekly Departmental seminar series, students will meet for one hour before each seminar to critically discuss papers on the subject of the weekly seminar. Students will take turns introducing the papers and leading discussions on an overview of the research topic, some of the methodologies, results and conclusions.
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 721 Ph.D. Seminar Course 2 (1 credit)
Overview
Physiology : Required for Ph.D. students. Coordinated in conjunction with the weekly Departmental seminar series, students will meet for one hour before each seminar to critically discuss papers on the subject of the weekly seminar. Students will take turns introducing the papers and leading discussions on an overview of the research topic, some of the methodologies, results and conclusions.
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 722 Ph.D. Seminar Course 3 (1 credit)
Overview
Physiology : Required for Ph.D. students. Coordinated in conjunction with the weekly Departmental seminar series, students will meet for one hour before each seminar to critically discuss papers on the subject of the weekly seminar. Students will take turns introducing the papers and leading discussions on an overview of the research topic, some of the methodologies, results and conclusions.
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 723 Ph.D. Seminar Course 4 (1 credit)
Overview
Physiology : Required for Ph.D. students. Coordinated in conjunction with the weekly Departmental seminar series, students will meet for one hour before each seminar to critically discuss papers on the subject of the weekly seminar. Students will take turns introducing the papers and leading discussions on an overview of the research topic, some of the methodologies, results and conclusions.
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 724 Ph.D. Seminar Course 5 (1 credit)
Overview
Physiology : Required for Ph.D. students. Coordinated in conjunction with the weekly Departmental seminar series, students will meet for one hour before each seminar to critically discuss papers on the subject of the weekly seminar. Students will take turns introducing the papers and leading discussions on an overview of the research topic, some of the methodologies, results and conclusions.
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PHGY 725 Ph.D. Seminar Course 6 (1 credit)
Overview
Physiology : Required for Ph.D. students. Coordinated in conjunction with the weekly Departmental seminar series, students will meet for one hour before each seminar to critically discuss papers on the subject of the weekly seminar. Students will take turns introducing the papers and leading discussions on an overview of the research topic, some of the methodologies, results and conclusions.
Terms: Fall 2011, Winter 2012
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
Complementary Course (3 credits)
One course to be chosen from the following courses:
-
BINF 621 Bioinformatics: Molecular Biology (3 credits)
Overview
Bioinformatics : The main problems related to the analysis of biological sequences (sequence comparison, homology, gene annotation, phylogenetic inference, comparative genomics) and the computational approaches (dynamic programming algorithms, Blast heuristics, hidden Markov models, Bayesian statistics).
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
- Restriction: Enrolment by students in the Bioinformatics option or by permission from the course coordinators only. Limited to 30 students.
-
BMDE 652 Bioinformatics: Proteomics (3 credits)
Overview
Biomedical Engineering : Overview of high-throughput proteomic technologies commonly employed to study the localization and function of all proteins in an organism, and the bioinformatic approaches to analyze raw data and deposit them in proteome databases.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
- Prerequisite: Enrolment in Bioinformatics option program or permission by coordinators.
- Note: The course is inter-disciplinary and is targeted to students with different scientific backgrounds. A substantial portion of marks will be given based on practical assignments.
-
BTEC 555 Structural Bioinformatics (3 credits)
Overview
Biotechnology : Fundamentals of protein structure and the application of tools for structure determination, how protein structure allows us to understand the complex biological functions, and how knowledge of protein structure can contribute to drug discovery.
Terms: Winter 2012
Instructors: Salavati, Reza (Winter)
Winter
1-hr lecture, followed by 2 hrs of computer lab.
Prerequisite: Molecular biology or biochemistry, and basic bioinformatics, or permission of instructor.
-
COMP 618 Bioinformatics: Functional Genomics (3 credits)
Overview
Computer Science (Sci) : Techniques related to microarrays (normalization, differential expression, class prediction, class discovery), the analysis of non-coding sequence data (identification of transcription factor binding sites), single nucleotide polymorphisms, the inference of biological networks, and integrative Bioinformatics approaches.
Terms: Winter 2012
Instructors: Hallett, Michael Trevor (Winter)
Prerequisite: Enrolment in Bioinformatics Option Program or permission of coordinators.
Restrictions: Enrolment by students in the Bioinformatics Option Program or by permission of course coordinators only. Computer Science graduate students not in the Bioinformatics Option Program need additional permission of the M.Sc. or Ph.D. Committee respectively.