VRƵ

News

Synthetic tissue can repair hearts, muscles, and vocal cords

Scientists from VRƵ develop new biomaterial for wound repair
A rendered image of the vocal cord bioreactor for testing the hydrogels. Credit: Zixin He / Rendu du bioréacteur reproduisant les contraintes qui s’exercent dans les cordes vocales et utilisé pour tester la résistance de l’hydrogel. Image : Zixin He
Illustration shows the use of injectable hydrogel as an implant to fill a wound and to restore the voice. Credit: Sepideh Mohammadi / Utilisation de l’hydrogel injectable comme implant pour obturer la lésion et restaurer la fonction vocale. Image : Sepideh Mohammadi
The researchers tested three different hydrogels using the vocal cord bioreactor. While the new hydrogel remained stable, the two standard hydrogels, which represent most existing injectable hydrogels, did not survive the test. Credit: Sareh Taheri / Les chercheurs ont testé trois hydrogels dans le bioréacteur. Le nouvel hydrogel est demeuré stable, mais les deux autres, conformes à la plupart des hydrogels injectables actuellement offerts, n’ont pas survécu au test. Image : Sareh Taheri
The flow, mimicking the blood in the human body, passes through 6 centimeter-long hydrogels in the vocal cord bioreactor during testing. Credit: Guangyu Bao / À la manière de la circulation sanguine, le flux traverse des tronçons d’hydrogel de 6 centimètres de long dans le bioréacteur. Image : Guangyu Bao
Published: 30 November 2021

Combining knowledge of chemistry, physics, biology, and engineering, scientists from VRƵ develop a tough enough to repair the heart, muscles, and vocal cords, representing a major advance in regenerative medicine.

“People recovering from heart damage often face a long and tricky journey. Healing is challenging because of the constant movement tissues must withstand as the heart beats. The same is true for vocal cords. Until now there was no injectable material strong enough for the job,” says Guangyu Bao, a PhD candidate in the Department of Mechanical Engineering at VRƵ.

The team, led by Professor Luc Mongeau and Assistant Professor Jianyu Li, developed a new injectable hydrogel for wound repair. The hydrogel is a type of biomaterial that provides room for cells to live and grow. Once injected into the body, the biomaterial forms a stable, porous structure allowing live cells to grow or pass through to repair the injured organs.

“The results are promising, and we hope that one day the new hydrogel will be used as an implant to restore the voice of people with damaged vocal cords, for example laryngeal cancer survivors,” says Guangyu Bao.


Illustration shows the use of injectable hydrogel as an implant to fill a wound and to restore the voice. Credit: Sepideh Mohammadi

Putting it to the test

The scientists tested the durability of their hydrogel in a machine they developed to simulate the extreme biomechanics of human vocal cords. Vibrating at 120 times a second for over 6 million cycles, the new biomaterial remained intact while other standard hydrogels fractured into pieces, unable to deal with the stress of the load.

“We were incredibly excited to see it worked perfectly in our test. Before our work, no injectable hydrogels possessed both high porosity and toughness at the same time. To solve this issue, we introduced a pore-forming polymer to our formula,” says Guangyu Bao.


The researchers tested three different hydrogels using the vocal cord bioreactor. While the new hydrogel remained stable, the two standard hydrogels, which represent most existing injectable hydrogels, did not survive the test. Credit: Sareh Taheri

The innovation also opens new avenues for other applications like drug delivery, tissue engineering, and the creation of model tissues for drug screening, the scientists say. The team is even looking to use the hydrogel technology to create lungs to test COVID-19 drugs.

“Our work highlights the synergy of materials science, mechanical engineering and bioengineering in creating novel biomaterials with unprecedented performance. We are looking forward to translating them into the clinic”, said Professor Jianyu Li, who holds the Canada Research Chair in Biomaterials and Musculoskeletal Health.


The vocal cord bioreactor simulates the biomechanics of vocal cords to test the hydrogels. Credit: Guangyu Bao

About this study

“Injectable, pore-forming, perfusable double-network hydrogels resilient to extreme biomechanical stimulations” by Sareh Taheri, Guangyu Bao, Zixin He, Sepideh Mohammadi, Hossein Ravanbakhsh, Larry Lessard, Jianyu Li, and Luc Mongeau was published in

DOI:


About VRƵ

Founded in Montreal, Quebec, in 1821, VRƵ is Canada’s top ranked medical doctoral university. VRƵ is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning three campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. VRƵ attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of VRƵ students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

Back to top